US009256463B2

a2z United States Patent (10) Patent No.: US 9,256,463 B2
Jamjoom et al. (45) Date of Patent: Feb. 9, 2016
(54) METHOD AND APPARATUS TO REPLICATE 8,396,986 B2* 3/2013 Kanadaetal. 709/238
STATEFUL VIRTUAL MACHINES BETWEEN oo LIOTS BA% 2014 TSIKID o 718/1
CLOUDS 2007/0169121 AL* 7/2007 Huntetal.oocoerrrrnn 718/1
2009/0113109 Al* 4/2009 Nelsonetal. 711/6
(75) Inventors: Hani Jamjoom, Hawthorne, NY (US); 2010/0107162 Al* 4/2010 Edwardsetal. 718/1
: a1 2010/0174811 Al 7/2010 Musiri et al.
]ﬁg"el J. Williams, Hawthorne, NY 2011/0007746 Al* 1/2011 Mudigonda et al. ... 370/395.21
Us) 2011/0167298 Al 72011 Lee
. 2011/0208908 Al 8/2011 Chou et al.
(73) Assignee: INTERNATIONAL BUSINESS 2012/0017031 A1* 1/2012 Mashtizadeh et al. 711/6
MACHINES CORPORATION, 120050455 A% 4201 Mookeal T
iyazaki ..oooooveviiiiiinnne
Armonk, NY (US) 2012/0137287 Al* 52012 Pangetal. ... 718/1
3k
(*) Notice: Subject to any disclaimer, the term of this 2013/0086236 AL* 472013 Baucke ctal. v 7097223
patent is extended or adjusted under 35 OTHER PUBLICATIONS
US.C. 154(b) by 488 days. Cully, et al., “Remus: High Availability via Asynchronous Virtual
. Machine Replication”, NSDI” 08: Sth UNSENIX Symposium on
(21) Appl. No.: 13/537,348 Networked Systems Design and Implementation, pp. 161-174.
(22) Filed: Jun. 29,2012 * cited by examiner
(65) Prior Publication Data Primary Examiner — Qing Wu
US 2014/0007088 Al Jan. 2, 2014 Assistant Examiner — Wynuel Aquino
(74) Attorney, Agent, or Firm — F. Chau & Associates, LLC
(51) Imt.ClL
GO6F 9/455 (2006.01) (57) ABSTRACT
gg;ﬁ, zggzs (38828}) A method including replicating a first virtual machine (VM)
GOGF 9/48 52006.013 in a first cloud and putting the replicated VM in a second
' cloud. Activating the first VM and pausing the replicated VM.
(52) US.CL) First processing, at the first VM, traffic from VMs in the first
CPC o G061.7 9/4868 (2013.01); G061.7 9/455 cloud, wherein the first processing occurs when the first VM
(2013.01); G06F 9/5077 (2013.01); GO6F is activated and the replicated VM is paused. Buffering, at a
. 9. 50‘?8 (20_13'01)’ HO4L 67/1002 (2013.01) hypervisor of the replicated VM, traffic from VMs in the
(58) Field of Classification Search second cloud, wherein the buffering occurs when the first VM
None) is activated and the replicated VM is paused. Activating the
See application file for complete search history. replicated VM in response to state information of the first VM
. and pausing the first VM. Second processing, at the replicated
(56) References Cited VM, the buffered traffic according to the state information of
U.S. PATENT DOCUMENTS the ﬁrst VM, Wl.lereir.l the second processing occurs when the
replicated VM is activated and the first VM is paused.
7,613,749 B2 11/2009 Flynn, Jr. et al.
7,739,349 B2 6/2010 Holt 15 Claims, 7 Drawing Sheets

(Active)

MBx

Incoming Traffic
(From Virtual

QOutgoing Traffic

Network) Fiip
Engine

(To Virtual
Network)

Buffer

VMMx

{Paused)

State Delta

MBy

Incoming Traffic
(From Virtual
Network)

Flip
Engine

Buffer

VMMy

U.S. Patent Feb. 9, 2016 Sheet 1 of 7 US 9,256,463 B2

120

\)\f'“/

PRIOR ART

FIG. 1

U.S. Patent Feb. 9, 2016 Sheet 2 of 7 US 9,256,463 B2

PRIOR ART

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 3 of 7 US 9,256,463 B2

PRIOR ART

FIG. 3

U.S. Patent Feb. 9, 2016 Sheet 4 of 7 US 9,256,463 B2

VM1

120

VM4

FIG. 4

U.S. Patent Feb. 9, 2016 Sheet 5 of 7 US 9,256,463 B2

(Active)
MBx
Incoming Traffic Outgoing Traffic
(From Virtual y (To Virtual
Network) . Network)
Flip >
Engine
Buffer VMM
State Delta
(Paused)
MBy
Flip
Engine
Incoming Traffic
(From Virtual
Network)
Buffer VMMy

FIG. 5

U.S. Patent Feb. 9, 2016 Sheet 6 of 7 US 9,256,463 B2
(Paused)
MBx
Flip
Engine
incoming Traffic
(From Virtual
Network)
d Buffer VMMx
(Active)
MBy
Incoming Traffic Outgoing Traffic
(From Virtual 7Y (To Virtual
Network)) Network)
Flip >
Engine
Buffer VMMy
State Delta

FIG. 6

U.S. Patent Feb. 9, 2016 Sheet 7 of 7 US 9,256,463 B2
701
4 704 -
702 705
/
CPU < e > Display
706
707
~o
703 —ble Input
N Memory Devices
v
A
708
Signal -
Source

FIG. 7

US 9,256,463 B2

1
METHOD AND APPARATUS TO REPLICATE
STATEFUL VIRTUAL MACHINES BETWEEN
CLOUDS

BACKGROUND

1. Technical Field

The present invention relates to cloud based virtual net-
works, and more particularly, to a virtual machine replication
scheme applicable to such networks.

2. Discussion of the Related Art

As enterprise workloads are migrated to the cloud, it is
essential that hybrid and/or multi-cloud deployments are sup-
ported. However, enterprise workloads often contain servers
or network components that act as choke points that may be
tied to a single site and difficult to replicate. For example,
many servers may communicate with a stateful firewall,
dynamic host configuration protocol (DHCP) server, authen-
tication server or file server. Servers on different clouds can-
not communicate with these components locally, thereby
causing significant traffic overhead between clouds or requir-
ing the redesign of the application or component. FIGS. 1-3
exemplarily illustrate this scenario.

For example, FIG. 1 shows an enterprise workload built
from a virtual network that includes virtual machines VM1-
VM4 and a middlebox MB in a cloud computing environment
110. The middlebox MB may be a virtual machine that per-
forms packet inspection, protocol acceleration, DHCP,
authentication, etc. of traffic flowing between VM1-VM4, for
example. The dashed lines between the virtual machines
VM1 and VM2 and the middlebox MB illustrate traffic flow-
ing from VM1 to VM2 and vice versa. The dashed lines
between the virtual machines VM3 and VM4 and the middle-
box MB illustrate traffic flowing from VM3 to VM4 and vice
versa. FIG. 2 shows that even when the virtual machines VM3
and VM4 are moved to cloud computing environment 120,
their traffic must still go through the middlebox MB in the
cloud computing environment 110. FIG. 3 shows that the
movement of the middlebox MB to the cloud computing
environment 120 does not help much as traffic flow between
VM1 and VM2 in the cloud computing environment 110 must
still pass through the middlebox MB.

As can be seen, the placement of the middlebox MB in the
cloud computing environment 110 or 120 can lead to adrop in
performance of the virtual network. For example, in the case
shown in FIG. 3, the traffic must leave the cloud computing
environment 110 to be processed by the middlebox MB in the
cloud computing environment 120. This transit takes time and
affects latency. This transit also increases cost, since traffic
leaving a cloud costs additional monies.

BRIEF SUMMARY

The present invention discloses a virtual machine replica-
tion scheme that improves performance of cloud based virtual
networks.

In an exemplary embodiment of the present invention, the
method includes: replicating a first virtual machine (VM)
found in a first cloud computing environment and putting the
replicated VM in a second cloud computing environment;
activating the first VM and pausing the replicated VM; first
processing, at the first VM, traffic from VMs in the first cloud
computing environment, wherein the first processing occurs
when the first VM is activated and the replicated VM is
paused; first buffering, at a hypervisor corresponding to the
replicated VM, traffic from VMs in the second cloud comput-
ing environment, wherein the first buffering occurs when the

10

15

20

25

30

35

40

45

50

55

60

65

2

first VM is activated and the replicated VM is paused; acti-
vating the replicated VM in response to state information of
the first VM and pausing the first VM; and second processing,
at the replicated VM, the first buffered traffic according to the
state information of the first VM, wherein the second process-
ing occurs when the replicated VM is activated and the first
VM is paused.

In an exemplary embodiment of the present invention, the
method includes replicating a first VM to produce a second
VM,; activating the first VM and pausing the second VM first
processing traffic at the first VM, wherein the first processing
occurs when the first VM is activated and the second VM is
paused; buffering, at a virtual machine manager of the second
VM, traffic destined for the second VM, wherein the first
buffering occurs when the first VM is activated and the second
VM is paused; activating the second VM in response to state
information of the first VM and pausing the first VM; and
second processing, at the second VM, the buffered traffic
according to the state information of the first VM, wherein the
second processing occurs when the second VM is activated
and the first VM is paused.

In an exemplary embodiment of the present invention, the
method includes replicating a first VM to produce a second
VM and a third VM; activating the first VM and pausing the
second VM and the third VM first processing traffic at the
first VM, wherein the first processing occurs when the first
VM is activated and the second and third VMs are paused;
first buffering, at a virtual machine manager of the second
VM, traffic destined for the second VM, wherein the first
buffering occurs when the first VM is activated and the second
and third VMs are paused; second buffering, at a virtual
machine manager of the third VM, traffic destined for the
third VM, wherein the second buffering occurs when the first
VM is activated and the second and third VMs are paused;
activating the second VM in response to state information of
the first VM and pausing the first VM; and second processing,
at the second VM, the first buffered traffic according to the
state information of the first VM, wherein the second process-
ing occurs when the second VM is activated and the first and
third VMs are paused.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates a prior art virtual network configuration
in a single cloud;

FIG. 2 illustrates a prior art virtual network configuration
across clouds;

FIG. 3 illustrates a prior art virtual network configuration
across clouds;

FIG. 4 illustrates a virtual network configuration across
clouds, according to an exemplary embodiment of the present
invention;

FIGS. 5 and 6 illustrate the operation and configuration of
avirtual machine (VM), its virtual machine manager (VMM),
a replica of the VM and the replica’s VMM, according to an
exemplary embodiment of the present invention; and

FIG. 7 illustrates an apparatus for implementing an exem-
plary embodiment of the present invention.

DETAILED DESCRIPTION

A cloud or a cloud computing environment may refer to the
delivery of computing as a service rather than a product,
whereby shared resources, software, and information are pro-
vided to computers and other devices as a metered service
over a network (typically the internet).

US 9,256,463 B2

3

A virtual machine (VM) may be a software implementa-
tion of a machine (e.g., a computer) that executes programs
like a physical machine. VMs may be separated into two
major categories, based on their use and degree of correspon-
dence to any real machine. A system VM provides a complete
system platform which supports the execution of a complete
operating system (OS), for example. In contrast, a process
VM is designed to run a single program, which means that it
supports a single process, for example. An essential charac-
teristic of a VM is that the software running inside is limited
to the resources and abstractions provided by the VM, thus it
cannot break out of its virtual environment.

As stateful VM may mean the VM keeps track of the state
of an interaction, usually by setting values in a storage field
designated for that purpose.

An enterprise workload may consist of a number of VM
that communicate with each other to form a network topol-
ogy. Each VM may contain an application component or a
middlebox that may be shared by multiple applications. An
example enterprise workload may consist of two “three-tier”
applications (a three-tier application includes a web server, an
application server and a database, for example) in which all
traffic from either Web tier must flow through a shared
middlebox VM acting as a firewall or an intrusion detection
system.

In brief, the present invention discloses a method and appa-
ratus to replicate stateful VMs between multiple clouds, even
if the VMs were not designed to be easily replicated. Replica
VMs may be identical, down to the memory contents, internet
protocol (IP) address and network connections that they con-
tain. However, unlike standard replication schemes, accord-
ing to the present invention, traffic can enter either of the VM
replicas: there is no concept of master and slave. Additionally,
only one of the VM replicas may be running at any one time.
In other words, the replicas are time multiplexed. For
example, before a replica begins to run, the two replicas
become synchronized via a snapshot update of the VM
memory state from the other replica, thus ensuring that the
internal state of the VM (or replica) is always consistent.

Traffic at each site (e.g., cloud) is destined for its local
replica. Ifthe replica is currently running, the traffic proceeds
into the VM for processing. Otherwise, the traffic is buffered
until the replica becomes active.

This present inventive approach requires no knowledge of
the internal workings of the VM it operates at the hypervisor
level. Furthermore, the potential diversion of every network
packet to a different cloud is avoided: resulting in reduced
cost both monetarily (clouds charge a fee for data coming in
and going out of the cloud) and in terms of latency.

FIG. 4 illustrates a virtual network configuration across
clouds, according to an exemplary embodiment of the present
invention. In FIG. 4, middlebox MBY is a replica of middle-
box MBx. A VM may be replicated by temporarily suspend-
ing the VM and copying all virtual memory, virtual central
processing unit (CPU), and virtual device state to another
physical machine, after which either the VM or its replica can
be resumed. As shown in FIG. 4, traffic within the cloud
computing environment 110 proceeds through the middlebox
MBx and traffic within the cloud computing environment 120
proceeds through the middlebox MBYy.

In an exemplary embodiment of the present invention,
when the middlebox MBx is active, traffic from VM1 and
VM2 in the cloud computing environment 110 is processed.
While the middlebox MBx is active, the middlebox MBy is
paused. While the middlebox MBy is paused, traffic from
VM3 and VM4 in the cloud computing environment 120 is
buffered at the hypervisor (or virtual machine manager

15

25

40

45

60

4

(VMM)) of the middlebox MBy. These processes will now be
described in detail with reference to FIGS. 5 and 6, with
reference back to FIG. 4.

In FIG. 5, there is shown the middlebox MBx in the active
state and the middlebox MBy in the paused state. The middle-
box MBx has its own hypervisor VMMx and the middlebox
MBYy has its own hypervisor VMMy. The hypervisor VMMx
includes a buffer and a flip engine. The hypervisor VMMy
includes a buffer and a flip engine. Since the middleboxes
MBx and MBYy are replicas, the buffers are the same as each
other and the flip engines are the same as each other. In other
words, architecturally, the buffers and the flip engines are the
same. However, each buffer will be holding different network
packets destined for MBx or MBy, respectively.

The buffer may be a reserved portion of memory on a
physical machine which temporarily stores incoming net-
work traffic while a replica is inactive. The flip engine may be
a small program that determines when an active replica
should become inactive and selects a target replica that should
become active, based on the state of the buffer and/or input
from other programs or users. A user may do this via an
interface. The flip engine may also be responsible for trans-
ferring the state that was updated since the local active replica
started to run the target replica.

When the middlebox MBx is active, as shown in FI1G. 5, the
middlebox MBx processes incoming traffic. For example, the
middlebox MBx may process traffic from VM1 and VM2 in
the cloud computing environment 110 of FIG. 4. However,
the middlebox MBx may process traffic from VMs in another
cloud. The actions performed by the middlebox MBx depend
on the type of middlebox. For example, a firewall middlebox
may examine headers on received packets, compare them
against firewall rules and drop the packets if they violate any
rules. In general, a middlebox may examine traffic and/or
modify it as packets are processed.

After being processed by the middlebox MBx, the outgo-
ing traffic is provided to the VMs in the cloud computing
environment 110. However, the outgoing traffic may be pro-
vided to VMs in another cloud. While the middlebox MBx is
active, the paused middlebox MBy may buffer incoming traf-
fic. In this case, traffic from VM3 and VM4 in the cloud
computing environment 120 may be kept in the buffer of
hypervisor VMMy. The middlebox MBy also process traffic
from VMs in another cloud.

While the middlebox MBx is active and processing incom-
ing traffic, the modified state of the middlebox MBx is main-
tained in the flip engine of the middlebox MBx. Variables in
the memory of the middlebox MBx may be updated; for
example, a counter may be incremented or a firewall rule may
be updated. In addition, the virtual CPU state, identifying
which instruction the middlebox MBx is currently executing
will continuously update. Depending on a particular circum-
stance, for example, when the number of packets received at
the middlebox MBx reaches a predetermined threshold, when
the number of packets stored in the buffer of the hypervisor
VMMy reaches a predetermined threshold, or to achieve a
target latency (e.g., by avoiding long packet wait times in the
buffer), the flip engine sends a state delta signal (also shown
as 130 in FIG. 4) to the paused middlebox MBy.

The state delta includes virtual memory and virtual CPU
states that have been updated since the middlebox MBx
became active. To track the modified virtual memory state,
shadow memory techniques can be applied, as used for
example in Cully et al., “Remus: High Availability via Asyn-
chronous Virtual Machine Replication,” NSDI 2008, pp. 161-
174, the disclosure of which is incorporated by reference

US 9,256,463 B2

5

herein in its entirety. The state delta also includes the virtual
CPU state maintained by the VMMXx corresponding to the
middlebox MBx.

In response to the state delta, the middlebox MBYy is acti-
vated as shown in FIG. 6. The middlebox MBx is paused at
this time. Because the middlebox MBy received the state
delta, which includes the last state of the middlebox MBx, the
now active middlebox MBy is able to process the traffic
stored in its buffer at that state. Based on the state delta, the
memory pages modified by the middlebox MBx overwrite the
state memory pages in the middlebox MBy before the
middlebox MBy becomes active. Similarly, the virtual CPU
context that the middlebox MBx was running is copied to the
middlebox MBYy. In other words, the middlebox MBy oper-
ates in synch with the middlebox MBy.

After the middlebox MBy finishes processing the packets
stored in its buffer, the middlebox MBy processes incoming
traffic. Since the middlebox MBx is paused, traffic destined
for the middlebox MBx is stored in the buffer of the hyper-
visor VMMXx. Similar to that described above, once the deter-
mination is made to reactivate the middlebox MBx, the flip
engine of the hypervisor VMMy will send the state delta to the
flip engine of the middlebox MBx and the middlebox MBx
will first process the data stored in its buffer, and then, any
new incoming packets. The middlebox MBy will be paused
and operate like a paused VM as described above.

Although not shown, the present invention may be appli-
cable to more than two replicated VMs. In this case, a set of
scheduling policies may be used to trigger flips. For example,
using a load balancing technique, the flip engine of an active
VM may send a state delta to an inactive VM based on a
comparison of the amount of data in each of the buffers of the
inactive VMs. Thus, the VM with the most packets gets to run
next.

In addition, the present invention provides a methodology
to collapse the replicas back into a single instance. If, for any
reason, multiple replicas are no longer necessary (e.g., all
VMs are migrated to the same cloud), a VM one of the
replicas can be selected to be destroyed. When the dying
replica finishes its last period of activity, its buffer is marked
asinactive and all packets from the virtual network that would
have been received by the replica’s buffer are diverted to a still
living replica. All flip engines are notified of the departure of
a replica so that it will not be scheduled again. Then, the
VMM can reclaim the resources associated with the replica.
This process can be repeated for all replicas until a single VM
remains.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)

15

35

40

45

50

55

60

65

6

of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article or
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

US 9,256,463 B2

7

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Referring now to FIG. 7, according to an exemplary
embodiment of the present invention, a computer system 701
can comprise, inter alia, a CPU 702, a memory 703 and an
input/output (I/0) interface 704. The computer system 701 is
generally coupled through the I/O interface 704 to a display
705 and various input devices 706 such as a mouse and
keyboard. The support circuits can include circuits such as
cache, power supplies, clock circuits, and a communications
bus. The memory 703 can include RAM, ROM, disk drive,
tape drive, etc., or a combination thereof. Exemplary embodi-
ments of present invention may be implemented as a routine
707 stored in memory 703 (e.g., a non-transitory computer-
readable storage medium) and executed by the CPU 702 to
process the signal from the signal source 708. As such, the
computer system 701 is a general-purpose computer system
that becomes a specific purpose computer system when
executing the routine 707 of the present invention.

The computer platform 701 also includes an operating
system and micro-instruction code. The various processes
and functions described herein may either be part of the
micro-instruction code or part of the application program (or
a combination thereof) which is executed via the operating
system. In addition, various other peripheral devices may be
connected to the computer platform such as an additional data
storage device and a printing device.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical functions(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,”“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims

10

15

20

25

30

35

40

45

50

55

60

65

8

below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
What is claimed is:
1. A method, comprising:
replicating a first virtual machine (VM) found in a first
cloud computing environment and putting the replicated
VM in a second cloud computing environment;
wherein the first cloud computing environment comprises:
a first hypervisor coupled to the first VM;
a first flip engine included with the first hypervisor; and
a first buffer included with the first hypervisor for buffering
traffic of VMs within the first cloud computing environ-
ment destined for the first VM
wherein the second cloud computing environment com-
prises:
a second hypervisor coupled to the replicated VM;
a second flip engine included with the second hypervisor;
and
a second buffer included with the second hypervisor for
buffering traffic of VMs within the second cloud com-
puting environment destined for the replicated VM
activating the first VM and pausing the replicated VM
first processing, at the first VM, traffic from the VMs in the
first cloud computing environment, wherein the first
processing occurs when the first VM is activated and the
replicated VM is paused;
buffering, at the second buffer of the second hypervisor
corresponding to the replicated VM, traffic destined for
the replicated VM from the VMs in the second cloud
computing environment, wherein the buffering occurs
when the first VM is activated and the replicated VM is
paused;
determining, with the first flip engine, state information for
sending a state delta signal to the replicated VM for
activation, wherein the state information represents a
number of packets received at the first VM or a number
of packets stored in the second buffer of the replicated
VM;
automatically sending the state delta signal from the first
flip engine to the second flip engine, wherein the state
delta signal includes virtual memory and central pro-
cessing unit states that have been updated since the first
VM became active;
in response to the state delta signal, memory pages modi-
fied by the first VM overwrite state memory pages in the
replicated VM before the replicated VM becomes active
so that the replicated VM processes the buffered traffic in
the second buffer at the last state of the first VM
activating the replicated VM in response to overwriting
state memory pages and pausing the first VM; and
second processing, at the replicated VM, the buffered trat-
fic in the second buffer according to the state informa-
tion of the first VM, wherein the second processing
occurs when the replicated VM is activated and the first
VM is paused.

US 9,256,463 B2

9

2. The method of claim 1, wherein the replicated VM has
the same state as the first VM in the second processing.

3. The method of claim 1, further comprising:

third processing, at the replicated VM, new traffic from the
VMs in the second cloud computing environment,
wherein the third processing occurs when the replicated
VM is activated and the first VM is paused;

buffering, at the first buffer, new traffic from the VMs in the
first cloud computing environment, wherein the buffer-
ing occurs when the first VM is paused and the replicated
VM is active;

activating, for the second time, the first VM in response to
state information of the replicated VM and pausing, for
the second time, the replicated VM; and

fourth processing, at the first VM, the buffered traffic in the
second buffer according to the state information of the
replicated VM, wherein the fourth processing occurs
when the first VM is activated, for the second time, and
the replicated VM is paused, for the second time.

4. The method of claim 3, wherein the first VM has the

same state as the replicated VM in the fourth processing.

5. The method of claim 1, further comprising:

deleting the replicated VM.

6. A method, comprising:

replicating a first virtual machine (VM) found in a first
physical machine and putting the replicated VM in a
second physical machine;

wherein the first physical machine comprises:

a first hypervisor coupled to the first VM;

a first flip engine included within the first hypervisor; and

a first buffer residing within the first hypervisor for bufter-
ing traffic of VMs within the first physical machine
destined to the first VM

wherein the second physical machine comprises:

a second hypervisor coupled to the replicated VM;

asecond flip engine included within the second hypervisor;
and

a second buffer residing within the second hypervisor for
buffering traffic of VMs within the second physical
machine destined to the replicated VM;

activating the first VM and pausing the replicated VM;

first processing, at the first VM, traffic from the VMs in the
first physical machine, wherein the first processing
occurs when the first VM is activated and the replicated
VM is paused;

first buffering, at the second buffer, traffic destined to the
replicated VM from the VMs in the second physical
machine, wherein the first buffering occurs when the
first VM is activated and the replicated VM is paused;

dynamically determining, by at least one of the flip
engines, state information for sending a state delta signal
to the replicated VM for activation wherein the state
information represents a number of packets received at
the first VM or a number of packets stored in the second
buffer of the replicated VM;

automatically sending the state delta signal from the first
flip engine to the second flip engine, wherein the state
delta signal includes virtual memory and central pro-
cessing unit states that have been updated since the first
VM became active;

in response to the state delta signal, memory pages modi-
fied by the first VM overwrite state memory pages in the
replicated VM before the replicated VM becomes active
so that the replicated VM processes the buffered traffic in
the second buffer at the last state of the first VM,

activating the replicated VM in response to overwriting
state memory pages, and pausing the first VM; and

10

15

20

25

30

35

40

45

50

55

60

65

10

second processing, at the replicated VM, the buffered trat-
fic in the second buffer according to the state informa-
tion of the first VM, wherein the second processing
occurs when the replicated VM is activated and the first
VM is paused.
7. The method of claim 6, wherein the first VM is disposed
in a first cloud computing environment and the traffic pro-
cessed by the first VM is provided from VMs in the first
computing environment or a different cloud computing envi-
ronment.
8. The method of claim 6, wherein the first VM is disposed
in a first cloud computing environment and the traffic pro-
cessed by the first VM is provided to VMs in the first com-
puting environment or a different cloud computing environ-
ment.
9. The method of claim 6, wherein the second VM is
disposed in a first cloud computing environment and the
buffered traffic in the second buffer is provided from VMs in
the first computing environment or a different cloud comput-
ing environment.
10. The method of claim 6, wherein the buffered traffic in
the second buffer is processed by the second VM in synch
with the first VM.
11. A method, comprising:
replicating a first virtual machine (VM) found in a first
physical machine to produce a first replicated VM and a
second replicated VM

putting the replicated VM in a second physical machine
and the second replicated VM in a third physical
machine;

wherein the first physical machine comprises:

a first hypervisor coupled to the first VM;

a first flip engine included within the first hypervisor; and

a first buffer residing within the first hypervisor for buffer-

ing traffic of VMs within the first physical machine
destined to the first VM

wherein the second physical machine comprises:

a second hypervisor coupled to the first replicated VM;

a second flip engine included within the second hypervisor;

and

a second buffer residing within the second hypervisor for

buffering traffic of VMs within the second physical
machine destined to the first replicated VM;

wherein the third physical machine comprises:

a third hypervisor coupled to the second replicated VM;

athird flip engine included within the third hypervisor; and
a third buffer residing within the third hypervisor for buff-
ering traffic of VMs within the third physical machine
destined to the second replicated VM;

activating the first VM and pausing the first replicated VM
and the second replicated VM;

first processing, at the first VM, traffic from the VMs in the
first physical machine, wherein the first processing
occurs when the first VM is activated and the first repli-
cated VM and the second replicated VM are paused;

first buffering, at the second buffer of the second hypervi-
sor corresponding to the first replicated VM and at the
third buffer of the third hypervisor corresponding to the
second replicated VM, traffic destined to the first repli-
cated VM from the VMs in the second physical machine
and traffic destined to the second replicated VM from the
VMs in the third physical machine, wherein the first
buffering occurs when the first VM is activated and the
first replicated VM and the second replicated VM are
paused;

US 9,256,463 B2

11

dynamically determining, by at least one of the flip
engines, state information for sending a state delta signal
to the first replicated VM or the second replicated VM
for activation;

wherein the state information represents a number of pack-
ets received at the first VM or a number of packets stored
in the second buffer of the first replicated VM;

wherein the state delta signal sent to the first replicated VM
is determined to have the greatest number of packets
residing in the second buffer compared to the third
buffer;

automatically sending the state delta signal from the first
flip engine to the second flip engine, wherein the state
delta signal includes virtual memory and central pro-
cessing unit states that have been updated since the first
VM became active;

in response to the state delta signal, memory pages modi-
fied by the first VM overwrite state memory pages in the
first replicated VM before the first replicated VM
became active so that the first replicated VM processes
the first buffered traffic at the last state of the first VM,

10

15

12

activating the first replicated VM in response to overwrit-
ing state memory pages, and pausing the first VM; and
second processing, at the first replicated VM, the first buft-
ered traffic in the second buffer according to the state
information of the first VM, wherein the second process-
ing occurs when the first replicated VM is activated and
the first VM is paused.
12. The method of claim 11, wherein the first replicated
VM is activated according to a scheduling policy.
13. The method of claim 12, wherein the scheduling policy
is set manually by a user or programmatically by a computer.
14. The method of claim 12, wherein the scheduling policy
is based on a data load applied to the second and third buffers
of the first and second replicated VMs.
15. The method of claim 12, further comprising:

pausing the first replicated VM, activating the second rep-
licated VM and keeping the first VM paused according
to the scheduling policy.

#* #* #* #* #*

